A genetic programming hyper-heuristic for the multidimensional knapsack problem
نویسندگان
چکیده
Hyper-heuristics are a class of high-level search techniques which operate on a search space of heuristics rather than directly on a search space of solutions. Early hyperheuristics focussed on selecting and applying a low-level heuristic at each stage of a search. Recent trends in hyper-heuristic research have led to a number of approaches being developed to automatically generate new heuristics from a set of heuristic components. This work investigates the suitability of using genetic programming as a hyper-heuristic methodology to generate constructive heuristics to solve the multidimensional 0-1 knapsack problem. A population of heuristics to rank knapsack items are trained on a subset of test problems and then applied to unseen instances. The results over a set of standard benchmarks show that genetic programming can be used to generate constructive heuristics which yield human-competitive results.
منابع مشابه
A Case Study of Controlling Crossover in a Selection Hyper-heuristic Framework Using the Multidimensional Knapsack Problem
Hyper-heuristics are high-level methodologies for solving complex problems that operate on a search space of heuristics. In a selection hyper-heuristic framework, a heuristic is chosen from an existing set of low-level heuristics and applied to the current solution to produce a new solution at each point in the search. The use of crossover low-level heuristics is possible in an increasing numbe...
متن کاملA genetic programming hyper-heuristic approach to automated packing
This thesis presents a programme of research which investigated a genetic programming hyper-heuristic methodology to automate the heuristic design process for one, two and three dimensional packing problems. Traditionally, heuristic search methodologies operate on a space of potential solutions to a problem. In contrast, a hyper-heuristic is a heuristic which searches a space of heuristics, rat...
متن کاملModified Choice Function Heuristic Selection for the Multidimensional Knapsack Problem
Hyper-heuristics are a class of high-level search methods used to solve computationally difficult problems, which operate on a search space of low-level heuristics rather than solutions directly. Previous work has shown that selection hyper-heuristics are able to solve many combinatorial optimisation problems, including the multidimensional 0-1 knapsack problem (MKP). The traditional framework ...
متن کاملA Case Study of Controlling Crossover in a Selection Hyper-heuristic Framework with MKP
In evolutionary algorithms, crossover operators are used to recombine multiple candidate solutions to yield a new solution that hopefully inherits good genetic material. Hyper-heuristics are high-level methodologies which operate on a search space of heuristics for solving complex problems. In a selection hyper-heuristic framework, a heuristic is chosen from an existing set of low-level heurist...
متن کاملAn Approximate Dynamic Programming Approach to Multidimensional Knapsack Problems
We present an Approximate Dynamic Programming (ADP) approach for the multidimensional knapsack problem (MKP). We approximate the value function (a) using parametric and nonparametric methods and (b) using a base-heuristic. We propose a new heuristic which adaptively rounds the solution of the linear programming relaxation. Our computational study suggests: (a) the new heuristic produces high qu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Kybernetes
دوره 43 شماره
صفحات -
تاریخ انتشار 2014